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Abstract
It remains challenging how to acquire a human body shape with high precision and evaluate the reconstructed models

effectively, because the results can be easily affected by various factors (e.g., the performance of the capture device, the unwanted
movement of the subject, and the self-occlusion of the articulated body structure). To tackle the above challenges, this research
presents a passive acquisition system, which comprises 60 spatially-configured Digital Single Lens Reflex (DSLR) cameras and a
carefully devised algorithmic pipeline for shape acquisition in a single shot. Different from traditional multi-view stereo solutions,
the constituent cameras are synchronized and organized into 30 binocular stereo rigs to capture images from multiple views
simultaneously. Each binocular stereo rig is regarded as a depth sensor. The acquisition pipeline consists of three stages. First,
camera calibration is performed to estimate intrinsic and extrinsic parameters of all cameras, especially for paired binocular
cameras. Second, depth inference based on stereo matching is employed to recover reliable depth information from RGB images.
A novel hierarchical seed-propagation stereo matching framework is proposed, resulting in 30 dense and uniform-distributed partial
point clouds. Finally, a point-based geometry processing step composed of multi-view registration and surface meshing is carried
out to obtain high-quality watertight human body shapes. This research also proposes an elaborate and novel method to assess
the accuracy of reconstructed non-rigid human body model based on anthropometry parameters, which solves the synchronization
of the ground-truth values and the measured values. Experimental results show that the system can achieve the reconstruction
accuracy within 2.5 millimeters in average.

1 Introduction
Interests in acquiring high-precision 3D human body shapes are motivated by a wide range of applications, such as medical
rehabilitation, garment customization, virtual fitting, etc. This task is significantly challenging, primarily because the human
body is non-rigid which easily varies during the acquisition process. Moreover, how to evaluate the reconstructed human body
models is rather difficult due to the problem of synchronization between the ground-truth values and the measured values. For
a fair comparison, the ground-truth should be simultaneously obtained during shape acquisition and then compared with the
acquired shape. Thus, this research attempts to address the above two problems via a passive multi-binocular vision system with
synchronized DSLR cameras, especially the issue of accuracy evaluation.

A growing body of literature has been examined in the field of human body model acquisition. The most common approach is
to use expensive high-end active devices, such as 3D scanners based on laser ranging or industrial structure light, which could result
in detailed human body point clouds. Due to self-occlusion and limited scanning range, the capturing could not be instantaneous.
It will lead to shape and texture distortions due to even a small movement of human body when conducting multi-view captures.
Various geometry processing algorithms are proposed to estimate the non-rigid deformation and then integrate all scanned point
clouds into a complete human body shape. Several high precision human body datasets from [4, 5, 17] have been collected
in this way with considerable costs and play important roles in subsequent research, such as model analysis. Recent works
from [49, 29, 8, 54] mainly focus on low-cost, portable consumer depth sensors such as Kinect or RGB-D cameras. Because of the
lower resolution of the depth images provided by those sensors, the obtained human body shape may lack geometric features, even
if prior knowledge such as a detailed parametric template has been provided. Currently, consumer depth sensors based acquisition
method is more suitable for motion capture or human body tracking.

One thing that should be addressed in active approaches is that, either high-end or low-cost systems take at least several
seconds to scan a complete human body. This relatively longer process is mainly due to the limited scanning efficiency of high-end
devices (e.g., laser scanners), and the interference between active sensors from different views (especially for structured light based
sensors). Therefore, the geometry and texture information of a human body can hardly be obtained instantly and simultaneously,
which is a key technical challenge that results in shape and texture distortions caused by body movement.

Passive approaches utilize techniques of image-based modeling as proposed by [33, 44] to solve the challenge of capturing time.
With no constraints on the arrangement and number of cameras, a human body could be captured in a single shot, approximate
to instantaneous. Then the human body shape along with textures is reconstructed based on photometric geometry. However, due
to the restricted image quality of the capture devices, the reliability and accuracy of passive approaches are traditionally regarded
as being inferior to active methods. Currently, high resolution cameras (such as DSLR) are able to capture rich geometry and
texture details of human body, which benefit recovering geometry of the human body surface from images. With the development
in multi-view stereopsis (cf. [37, 38]), there is a great potential for passive approaches to be comparable with the active methods
in terms of human body acquisition performance.

This research proposes a carefully-designed passive full-body capture system which consists of multiple synchronized DSLR
cameras, to acquire high precision models of static human body. In the proposed system, the shape distortion can be significantly
reduced, and both geometry and texture can be obtained simultaneously. To take full advantage of high-resolution images in
every viewpoint, this study employs the depth map fusion method [40] to reconstruct a human body model. Instead of computing
dense point clouds through multi-view stereopsis, a binocular stereo rig is used as a depth sensor to generate a dense depth map
for each viewpoint by performing stereo matching. It results in a key challenge that how to robustly and effectively estimate
dense depth information of high resolution stereo images of human body, which is texture-less in general. Another key challenge
is to integrate all the partial point clouds into a complete human body model, which requires highly accurate estimation of global
extrinsic parameters of each camera. The evaluation of reconstructed models remains challenging because it is difficult to obtain
the ground-truth value and the measured values simultaneously. All methods of using off-line measurements or scans are not
fair enough because the human body shape changes all the time. In this paper, the above key challenges, such as weak texture
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of human skin in stereo matching, and measurement of acquired models, etc., are carefully investigated and tackled. The main
contributions of this article include:

• A high precision 3D models of static human body acquisition and reconstruction system is designed and developed, including
specified hardware configuration and detailed acquisition algorithmic pipeline.

• A hierarchical stereo matching method based on seed-propagation is proposed to robustly estimate the depth information
of high resolution stereo images of human body, which is texture-less in general.

• An elaborate and novel method to assess the accuracy of reconstructed non-rigid human body model based on isometric
geometry and congruent constraints via anthropometry parameters. In the proposed evaluation method, the measured
values and the ground-truth values could be obtained simultaneously.

Comprehensive experimental results will be presented to verify the performance of the proposed system.

2 Related Work
Previous human body acquisition works based on passive-vision will be reviewed since they are most relevant to our work. These
works are briefly categorized into template-based and template-free methods according to whether a template prior is used for
reconstruction.

Template-based methods fit a pre-defined template model to partial or insufficient point clouds, so as to acquire completed
models. Key problems in template fitting, including vertex corresponding, hole filling and surface meshing, are solved effectively
in [4]. Following this pioneering work, many template-based reconstruction methods have been developed. A generic model of
human shape and kinematic structure are optimized in [41] to simultaneously match stereo, silhouette, and feature data across
multiple views. The naked human body shape under clothing is estimated in [55] by fitting a parametric model to 3D scans.
Pre-defined templates could be fitted to images directly, which is common in lightweight modeling application. In [6], detailed
human body are achieved by estimating the fitting parameters of the SCAPE models [5] directly from images. Guan et al. [15]
acquire both the shape and pose from a single photograph using a set of markers on the SCAPE model specified by users.

Template-based methods can efficiently generate a complete human body model with no hole, even with less captured data
from several views. However, the result quality may be limited by the shape representation ability of the pre-defined template. For
example, the template defined in a low-dimensional shape space may filter out high-frequency geometric details of a human body.
Furthermore, the fixed parameterization of the template may not be able to capture human body shape variations, especially with
topology changes.

Template-free methods utilize multi-view stereopsis (MVS) based reconstruction to obtain a complete model (cf. [40]). The
first MVS framework is proposed by [43] for modeling urban scenes and general objects. Many assumptions (such as planar
primitives) play an important role in effectively recovering the surface geometry information [53, 16]. Furukawa et al. [14] achieves
quasi-dense 3D reconstruction by recovering a number of small rectangular patches covering the object visible in the images,
which known as the patch-based multi-view stereopsis algorithm (PMVS). High resolution images make it possible to reconstruct
dense geometry directly. A dense 3D environment modeling method is proposed in [23] by using multiple pairs of high-resolution
spherical images. The accurate multi-view reconstruction method [9] exploits the high resolution images to acquire static models
of indoor scene/objects. Its multi-binocular stereo pipeline is similar to the proposed method. However, due to the simple depth
fusion strategy based on the visibility, alignment errors may exist in the eventually completed point cloud in [9].

The flexibility of MVS based reconstruction method extends its applicability to the domain of accurate static human modeling
in recent decades. Human faces as in [7, 52] and human bodies as in [34, 3] have been captured by many acquisition systems
based on MVS. The surface of human body is recovered from a video via robust stereo matching in [30]. It makes use of many
texture-related information such as visual hull, frontier points and implicit points to boost surface completeness and accuracy.
However, as a natural weakness, the human body skin lacks of textures. Other researches [42, 27], which aim at the capture of
dynamic human motion, prefer to replace the human body templates in conventional methods with data of surface recovered by
MVS. The limited number of cameras in the motion capturing may lead to the existence of wide-baseline stereo. DAISY [48]
designs an effective feature which could eliminate large distortions in that case, and then estimate dense depth maps from stereo
image pairs. The temporal information [26] in captured videos could be also used to refine the MVS reconstruction. Tung et
al. [51] take advantage of the image content stability provided by each single-view video to recover any surface region visible by
at least one camera. Recent work [12] focuses on transforming free-viewpoint video from multi-modal images, including RGB
images, IR images, etc. High quality human body models could be reconstructed by combining comprehensive information.

Similar to this paper, Remondino [34] investigates the reconstruction of static human body shapes from un-calibrated image
sequences. They focus on the estimation of camera orientation, and the average error of the reconstructed model is about 6.0mm
by rough manual measurements. Beeler et al. [7] present an impressive multi-view system which consists of multiple expensive
full-frame cameras for 3D human face capture. Images were taken at a close range so that the pores of the face can be used as
features for stereo matching and microscopic geometry recovery. The reconstruction error is estimated for a physical mask, which
is not directly applicable to real faces because the surface reflectance of the face mask is different from that of human skin. To
obtain 3D photo-realistic virtual avatars for just-in-time use in a game or simulation, Feng et al. [13] capture the human face,
hands and the whole body separately and then stitched together. Joo et al. [21] present an approach to capture the 3D structure
and motion of a ground of people, which extents the application of the MVS-based capture system.

3 System Overview
Inspired by [7], this article presents a passive multi-binocular system to capture a static human body in a single shot, aiming at the
accuracy of anthropometry measurements of the reconstructed human body. In this section, an overview of the proposed system
is described, which includes the hardware configuration, and the acquisition algorithmic pipeline which turning raw captured
images into high-quality human body model.

3.1 Hardware Overview
The system hardware configuration is shown in Fig. 1. 60 DSLR cameras (Canon 600D) with 50mm fixed-focal lens are placed
around a circular capture space of which diameter is 5m. All the cameras are arranged into 30 meta units. Each meta unit is a
stereo rig of two cameras with an accurate baseline 180mm. Among all the stereo rigs, 24 of them are evenly distributed along
the circle from 8 circular angles, focusing on the main torso of a human body from top, middle and bottom views for each angle.
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Figure 1: The multi-view system setup with binocular stereo rigs.

Figure 2: Overview of the acquisition pipeline with three major stages.

Other 6 stereo rigs are arranged for two arms with high flexibility. Each arm is captured from 3 viewpoints, including front-
view, back-view and side-view, to ensure flexible pose space for arms during capturing. The proposed hardware setup guarantees
redundant overlaps between adjacent viewpoints and covers the captures of various body shapes and heights (up to 2.0m)

Each camera is connected with a wireless shutter. All shutters can be triggered by the same remote controller. In this way, all
cameras are synchronized with a error of 0.5 milliseconds so that raw image data could be captured almost simultaneously. The
resolution of captured images is 5148×3456 and pixels of the human body could account for more than 50%. Instead of commonly
used green background, the proposed system uses white background to eliminate the color interference between background and
human skin. A diffuse environment lighting is set by using several photography lamps. Light first arrives at white ceiling and
then reflects to human skin which prevents specular highlights. It should be noticed that the number of cameras in the proposed
system could be adjusted according to capture requirements.

3.2 Acquisition Overview
As shown in Fig. 2, taking a set of uncalibrated images captured from multiple views as input, there are three stages in the
acquisition pipeline: system calibration, depth recovery, and 3D surface reconstruction. The first stage is to estimate poses of all
cameras in the global coordinate system. A checkerboard pattern and a cylindrically distributed pattern are used for calibrating
each stereo rig and all cameras respectively. The second stage is depth recovery via binocular stereo vision. A novel hierarchal
seed-propagation stereo matching framework is proposed to generate a dense and accurate depth map for each stereo rig. Apart
from typical stereo vision refinement, this study seeks further by applying 3D geometric refinement techniques to obtain smoother
depth maps. The third stage is to generate a complete mesh from multiple partial point clouds recovered in the previous stage.
Point-based processing pipeline, including multi-view point clouds registration, hole filling and 3D reconstruction, is employed to
reconstruct a complete human body model. The accuracy of system calibration and depth recovery ensures the quality of the
reconstructed human body models. The next section elaborates the details of the acquisition pipeline.

Recently, deep learning based methods have been extensively studied. Learning-based refinement strategies [27] are used to
benefit the reconstruction of arbitrary shapes. An end-to-end learning framework for multi-view stereopsis is proposed in [20].
There are several key challenges when applying the learning-based techniques, such as the ground-truth of camera parameters
and the human body models in our capture system, proper loss function which is effective in estimating the human body surface,
etc. Note that all previous works either showed only qualitative results, or roughly measured the results which exhibit larger
reconstruction error.
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4 Human Body Model Acquisition
4.1 System Calibration
This stage includes local calibration for each stereo rig and global calibration for the system, aiming to estimate the intrinsic and
extrinsic parameters of all cameras. To improve the accuracy of system calibration, a 3D calibration object (as shown in Fig.3) is
designed, which feeds accurate matched features in the optimization of Bundle Adjustment (BA). Meanwhile, the BA algorithm
is augmented with constraints of relative external parameters within a stereo rig. Details are described as follows.

For each stereo rig with two cameras {Cl
i , C

r
i }, this study estimates intrinsic parameters {Kl

i ,K
r
i } and stereo extrinsic

parameters {Ri, ti} by using a checkerboard calibration pattern as in [56]. The results {Kl
i ,K

r
i , Ri, ti} will be used as optimization

constraints to reduce uncertainties in the following global calibration. Note that local calibration only needs to be performed
once, since each stereo rig is formed by firmly mounting two cameras on a horizontal/vertical gimbal.

Global calibration estimates the projection matrices for all cameras in a global coordinate system, benefiting the final multi-
view depth fusion. The local calibration result is introduced as a constraint into the objective function of bundle adjustment [50].
An optimal 3D structure X = {Xj} and viewing parameters C = {Ki, Pi} are solved by minimizing Eq. (1) in the bundle
adjustment.

G(X,C) =

n∑
i=1

m∑
j=1

wij ||qij −Ki · Pi ·Xj ||2. (1)

Here Ki, Pi indicate the intrinsic matrix of the i-th camera Ci, and the estimated projection matrix (i.e., the camera pose). Xj

is the estimated j-th 3D feature in the scene, while qij indicates the corresponding 2D matched feature in the image of the i-th
camera. wij is an indicator variable which represents the visibility of Xj in Ci. n and m are the number of cameras and matched
2D features {qij}, respectively. In practice, the optimization of Eq. (1) may fail due to too many unknown parameters.

(a) (b) (c)

Figure 3: (a) The global calibration cylinder. (b) One example of the encoding patterns. (c) The system calibration result. Each
coordinate frame represents a camera. The points in the middle represent the reconstructed 3D encoding points on the cylinder.

This study adopts two strategies to reduce uncertainties. First, a 3D calibration cylinder shown in Fig. 3(a) is designed to
collect sufficient and reliable matched 2D features - {qij}. Each printed pattern is coded as a unique feature point to ensure
accurate matching of {qij}. As shown in Fig. 3(b), small solid and hollow disks represent 1 and 0. The disk pointed by the two
aligned squares in the middle is the starting point of the code. Second, the local calibration result is introduced into the objective
function as follows:

Ḡ(C,X) = G(C,X) + γ ·
s∑

i=1

||PL
i − [Ri|ti] · Pi

R||2F (2)

Compared with Eq. (1), the additional term in Eq. (2) constrains the estimated mutual camera poses in a stereo rig to be
consistent with the stereo extrinsic parameters from the local calibration. Moreover, {Ki} are also given by the local calibration.
The encoding matched feature points {qij} are provided accurately by the 3D cylinder. γ is a scalar to adjust the weight of
stereo extrinsic constraint and set to 1 in the practical experiments. Levenberg-Marquardt minimization [32] is applied to solve
the optimal camera poses. Fig. 3(c) shows the calibration results. Stereo rigs can be clearly observed and are consistent with the
camera arrangement in Fig. 1.

4.2 Hierarchical Seed-Propagation Stereo Matching
To recover the depth information from each stereo view, this study estimates a disparity image from a pair of stereo images via
stereo matching. However, the lack of colored textures on human skin may lead to enormous matching ambiguities. To tackle
this problem, a hierarchical stereo matching method based on seed-propagation [28] is proposed to robustly estimate the depth
information of high resolution stereo images of human body. Its pipeline is shown as Fig. 4,

First, an image pyramid is established to accelerate the efficiency of stereo matching of high resolution images. In each level
of the image pyramid, an interaction-between-levels stereo matching algorithm via seed propagation is proposed, based on two
observations: the smoothness of human skin and the existence of local salient features therein. Moreover, two 3D point cloud
processing operations are employed to optimize the 2D disparity map, so that the recovered depth is consistent with the human
shape geometry prior as much as possible. In following, the overall hierarchical strategy is presented first, then details of individual
steps at a single level of the hierarchy are elaborated.

4.2.1 Hierarchical Stereo Matching Framework
Image pre-processing is initially performed on exported raw images from all cameras, resulting in high-resolution images (about
3000×4000) used for stereo matching. The image pre-processing includes RAW-to-RGB format converting, background cropping
and rectification. Particularly, during the RAW-to-RGB format converting, several pairs of stereo images are generated in each view
by applying different photometric rendering parameters to the raw image data (i.e., CR2 format image data). Thus, radiometric
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Figure 4: Flowchart of the proposed hierarchical seed-propagation stereo matching framework.

information including human skin features could be preserved as much as possible, benefiting depth recovery afterwards. The
details of image pre-processing can be found in the supplementary material.

With an initial depth range of 1.5∼2.5 meters, a hierarchical framework is proposed to speed up the depth recovery. For
each pair of stereo images, an image pyramid is built by down-sampling with a factor of two, as shown on the left of Fig. 4.
{L1, L2, . . . , Ln} are used to indicate the layers, where n is the number of layers. As shown in Fig. 5, for the original input image
with the resolution of 2880×3840, the lowest resolution layer Ln should be about 360×500 to preserve local salient features.

L4 L3 L2 L1

Figure 5: Point-clouds recovered from the hierarchical disparity images at 4 layers, starting from the coarsest layer L4 (360×480)
to the finest layer L1 (2880× 3840).

The seed-propagation stereo matching is conducted from top to bottom in the image pyramid (i.e., from Ln to L1), which
means the depth of pixels in the input images are estimated from coarse to fine (see Fig. 5). As shown in Fig. 4, to estimate a
disparity image Dk for layer Lk, we apply a three-stage algorithm: matching seed extraction (Section 4.2.2), seed propagation
(Section 4.2.3), and disparity image refinement (Section 4.2.4). First, multi-modal image information which is saved in multiple
pairs of stereo images (as described in the supplementary material), are integrated to compute the matching cost volume Vk (for
layer Lk). For each pair of stereo images corresponding to one type of photometric rendering parameters, a sub-cost-volume vk is
computed. Vk is computed by averaging all vk for each pixel to gather comprehensive radiometric information. Matched features
(i.e. matching seeds) are extracted based on Vk, and then used to guide the dense matching in low contrast regions.

In the proposed hierarchical framework, layers are closely related. First, to compensate the loss of information due to
down-sampling operation, matchings seeds in higher resolution layers Lk−1~L1 are down-scaled to the current layer Lk as a
supplementary. When conflicts happen, the seeds derived from higher resolution layer are retained. Second, the disparity image
Dk+1 of the lower resolution layer Lk+1 is used to reduce the searching volume for Lk, and speed up the disparity estimation.
In addition, matches with extremely high confidence in Lk+1 are scaled to Lk as candidates of the matching seeds. A pseudo
algorithm of the proposed hierarchical stereo matching framework is presented as Algorithm 1.

4.2.2 Matching Seed Extraction
To tackle the lack of texture in human skin images, two steps are conducted in the proposed seed-propagation based stereo
matching algorithm: (1) first extract robust matching features and (2) then let these robust matches guide the dense stereo
matching. In this section, details of extracting matching seeds in one layer of the image pyramid are provided.

First, uniformly distributed features are extracted and matched. The input images are divided into 2D grids, and a certain
number (i.e. 4 in the practical experiments) of blob and corner features are extracted in each patch using Difference-of-Gaussian
(DoG) and Harris operator. The matching cost of Zero-Normalized Cross Correlation (ZNCC) C(pr, pm) (definition in supple-
mentary material) are used to choose the optimal matching pixels pr and pm, as it performs better for human skin images than
other commonly used costs [19]. Based on the winner-take-all strategy in stereo matching, the best match pm for a pixel pr is
selected by the largest value of C(pr, pm).

However, due to the lack of texture of human skin, solely relying on ZNCC may not perform well. To ensure reliable matching
seeds and correct dense matches, four constraints are added to determine if the best match {pr, pm} can be accepted. Photometric
Consistency which encourages reliable matching based on distinctiveness of a match from its neighboring matches. Smoothness
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Algorithm 1 The hierarchical stereo matching framework

Input A pair of stereo images {Iright, Ileft};
Output A disparity image D {md};
1: An image pyramid P = {L1, L2, ..., Ln};
2: i = n
3: for all Li in P do
4: Computing a cost volume Vi for Li;
5: Extracting matching seeds Si for Li;
6: end for
7: Cost volumes V = {V1, V2, ..., Vn}
8: Matching seeds S = {S1, S2, ..., Sn}
9: for all Li in P do

10: if Li is not Ln then
11: Down-sampling matching seeds {Si−1, ..., Sn} to St

12: Si ← Si and St

13: end if
14: Computing dense stereo matching Di for Li

15: end for
16: return Dn

which ensures similar disparity between a pixel and its neighbors. Ordering which preserves the spatial relation between two
neighboring matches. Uniqueness which guarantees the matching is commutative between reference image and matching image.
Different from the stereo matching in [7], a metric “Confidence" is proposed to reserve the most distinct pixel matches which have
been satisfied all the constraints. In addition, the importance of each constraint varies at different steps in the proposed seed-
propagation based stereo matching. More details of the constraint definition are depicted in supplemental material. Fig. 6(a)∼(d)
illustrate the extracted features. By checking four constraints sequentially, features at the same scanline in two stereo images are
extracted and matched. Fig. 6(e) shows the matched features in red.

(a) (b)

(c) (d)

(e)

Figure 6: (a) and (b) show the blob (green) and the corner (blue) features extracted in the reference image and the matching
image, respectively. To clearly demonstrate the uniform distribution of features, two corresponding cropped patches from two
images are presented in (c) and (d). The matched features between them are shown in (e) with red color.

4.2.3 Seed-Propagation for Stereo Matching
The robust matched features, combined with feature matches derived from higher resolution layers (as presented in 1), are
employed as matching seeds. Then, a best-first propagation strategy is performed to generate more matches in low contrast
regions, starting from the neighboring areas of those seeds. A matching seed (pr, pm) is indicated as ms, and a priority P (ms) is
assigned as

P (ms) = C(ms) ·R(ms) (3)

which equals to the product of its matching cost and confidence.
The propagation starts from matching seeds with the highest priority. A new match generated in propagation also needs to

satisfy the four constraints. Given textures are limited in most parts of human skin image, the smoothness constraint plays an
important role in extracting accurate matches during propagation. The propagation terminates when no more candidate matches
can be obtained, resulting in a quasi-dense disparity image, noted as DQ.

After seed propagation, pixels fail to satisfy the above constraints remain un-matched. Based on the local smoothness of the
human body shape, a disparity value d(p) is assigned to an un-matched pixel p using image filtering as

d(p) =
∑

q∈N(p)

W (q) ∗ d(q) (4)

where q is in the neighborhood of q, donated as N(p). W (q) is the filtering weight. The guided image filter, proposed in [18],
is used to calculate the weight W (q). Assume that the filtering output F and the guidance image G are linearly related (i.e.,
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F = a∗G+b), the guided image filter should ensure the consistency of gradient variation between F and G. By using the reference
image Ir as the guidance image, the filtered disparity result DF preserves features and edges in the reference image [18].

For now, an initial dense disparity result DF of one layer is obtained. To further reduce the local matching ambiguities
caused by the winner-take-all strategy, a dynamic programming based optimization [24] is employed to refine DF along multiple
directions to enforce global smoothness. In each direction r, the disparity d(p) for pixel p in DF is refined by minimizing the
following objective function: ∑

p

C(p, p+ d(p)) +
∑
p

λ(p)φ(|d(p)− d(p+ r)|), (5)

which is the sum of the matching cost C(p, p+ d(p)) and the penalization of disparity differences between the current pixel p and
its adjacent pixels p+ r in direction r. λ is a weight function to control the degree of smoothness.

Fig. 7(a) shows 8 optimized directions in the dynamic programming. Since those constraints ensure the reliability of pixel
matches, only k(=16) disparity candidates near the initial DF (p) need to be computed during optimization. Instead of updating
the disparity instantly after optimizing in each direction, the matching cost volume is accumulated for all directions to eliminate
streak artifacts. Last, the final refined disparity DR is obtained by applying general refinement techniques in stereo matching
including region voting, cross-check and median filtering to remove outliers. A cross-based support areas R(p) [31], as shown
in Fig. 7(b), is used as the neighborhood. Besides, a sub-pixel enhancement technique which models disparity values and their
matching costs as a quadratic polynomial function is used to compute the floating point disparity values.

p p
v+

v–

q
h–

h+

(a) (b)

Figure 7: (a) Dynamic programming is performed in multiple directions to ensure semi-global smoothness. (b) Illustration of the
cross based region R(p). For pixel p. h−, h+, v− and v+ are the left, right, top and bottom ranges, respectively.

Fig. 8(a) and (b) show the propagation result of the matching seeds extracted only in the current layer and the corresponding
result supplemented with reliable matches from other hierarchical layers, respectively. The matches are obviously denser in the
latter result. In Fig. 8, a RGB human body image is used as a base image to show the coverage of the resulting matches. Compared
Fig. 8 (c) and (d), the depth discontinuity in (c) is improved a lot after the semi-global optimization.

(c) (d)(b)(a)

D
Q

D
Q

D
F

D
R

Figure 8: Disparity images generated in different steps by (a) propagating the matching seeds only extracted in the current layer;
(b) propagating the matching seeds supplied with the reliable matches derived from other layers; (c) applying the guidance filter;
and (d) semi-global dynamic programming optimization.

4.2.4 Human Body Disparity Refinement
Generally the shape of a human body can be modeled as a smooth parametric surface either for 2D disparity or 3D depth. Based
on this prior, the obtained disparity image would be further refined in precision of float by applying two 3D geometry processing
techniques tailored into 2D.

First, outliers with extremely large or small disparity could be rejected using statistical analysis [35] on the disparity image
DR. Without loss of generality, the mean and deviation of the difference between the pixel and its neighbors are assumed to be
satisfied with the Gaussian distribution. A pixel with a mean difference value greater than a threshold will be rejected. In practice,
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this progress iterates 3∼5 times, and those pixels with odd disparity values can all be removed. To illustrate the feasibility of the
refinement, depth maps from disparity images are generated by using the triangulation formula:

Z =
B ∗ F

D
(6)

Here, B and F are the calibrated baseline and focal length, respectively. As shown in Fig. 9, outliers have been removed in the
depth map after the refinement of statistical analysis.

(a) (b) (c)

Figure 9: (a) and (b) are the recovered depth data before and after two refinement techniques: statistical outliers removal and
adaptive moving least squares, respectively. (c) is (b) without textures.

After sub-pixel enhancement, matching errors would be magnified and lead to high frequency noises due to the inversely
proportional relationship between depth and disparity. Adaptive moving least squares (AMLS) [2] technique is used in 2D
disparity images to filter out the high frequency noises. The human body shape can be treated as a smooth parametric surface
in 3D, meaning disparity values along a epipolar line (scanline) can be modeled as a smooth analytic function. For each scanline
Yc, pixels (x, yc) are divided into several segments by constraining the disparity range of a segment within a threshold τd. Then a
local polynomial f(x, yc) is used to model the relationship between the pixel coordinate (x, yc) and its disparity d(x, yc). Finally,
the disparity value d(x, yc) will be replaced by the fitted value of f(x, yc). τd is set to 5 in the practical experiments. As shown
in Fig. 10, the fitted disparity curve is reasonably close to the integer disparity values. Moreover, as shown in Fig. 9(c), the depth
map without texture is smooth and consistent with the human body geometry prior.

(b)(a) (c)

pixel disparity

sub-pixel disparity

X

D
is
p
ar
it
y

Figure 10: (a) and (b) are the recovered depth data from disparities before and after adaptive moving least squares. The
discontinuities in (a) are greatly reduced. (c) Disparity values in a scan-line. The curves are with the same color as the two lines
in (a) and (b).

4.3 Point Cloud Fusion and Surface Reconstruction
For each stereo rig in the proposed system, a clean and smooth partial point cloud can be generated from the disparity image by
applying the triangulation formula and the refinement process (see Fig. 9(b)). To reconstruct a complete high-quality human body
model, multi-view registration is employed to fuse partial point clouds under rigid and non-rigid transformations, and surface
reconstruction is employed to fill missing data and generate watertight mesh model.

4.3.1 Multi-view Point Cloud Fusion
The partial data, denoted as {X1,X2 . . . ,Xm}, needs to be fused into a complete human body point cloud XH . The fusion
process contains three steps: an initial alignment based on global calibration in Section 4.1, a multi-view rigid registration, and
a multi-view non-rigid registration.

First, Xi is transformed into a global coordinate system using the corresponding calibrated camera pose as Pi · Xi, resulting
in the initial alignment result X I which roughly forms the whole body (see Fig. 11(b)). For comparison, the coarse alignment
result from bundle adjustment is shown in Fig. 11(a). It can be seen that the proposed global calibration largely improves the
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Figure 11: (a) The alignment based on the calibration result of the bundle adjustment. (b) The initial alignment based on our
global camera calibration in Section 4.1. (c) and (d) show the better aligned point clouds after rigid and non-rigid registration,
respectively.

initial alignment. Second, multi-view rigid registration is performed to minimize the distance between partial data, leading to an
improved result XR over initial alignment. The stereo rig setup of the proposed system is abstracted into an undirected spatial
relation graph G with 30 nodes, each of which represents a partial point cloud from a stereo rig (see Fig. 12). Each graph edge
connects two nodes with overlapping point clouds. Black edge connects two nodes with sufficient overlap, while for blue edge the
overlapping condition should be checked. If the number of overlapping points are less than 10% of the whole point cloud, the
corresponding edge should be removed.

Figure 12: Illustration of the spatial relation graph G.

Based on G, a loop-based incremental registration algorithm in [45] is used to refine X I . The basic idea is to register all
partial points loop by loop. Each loop corresponds to a spatial circular arrangement in G. Once point clouds in each loop are
merged, a process of global error diffusion is applied to distribute the residual error evenly to each point cloud. The improved
result after rigid-registration is shown in Fig. 11(c), where points from left forearm are aligned more tightly.

Non-rigid registration is further employed to resolve geometry inconsistency caused by camera distortion and stereo matching
deviation. As shown in Fig. 11(d), the points around the hands are cluttered because of non-rigid shape distortion of the same
part. To tackle these artifacts, an improved hierarchical non-rigid registration method [11] is adopted to refine XR. The spatial
relation in G is re-used and the warping functions are modeled as multiple thin plate splines. The final point cloud fusion result
after non-rigid registration is denoted as XN , and shown in Fig. 11(d). Comparing the results in Fig. 11(c) and (d), it could be
seen that the non-rigid registration result is much more compact, especially in boundaries of each point cloud. For more details
of multi-view point cloud registration, please refer to [45, 47].

4.3.2 Surface Mesh Reconstruction
After data fusion, a complete point cloud of the human body shape is obtained. Due to self-occlusion, small holes caused by
missing data may still appear in regions such as oxter, crotch, bottom of foot, and top of head. A hole filling step is introduced to
fill the missing data based on template-based deformation [4]. In this research, it is tailored into a local approach since most parts
of human body shape can be well captured. After filling all the missed data, de-noising and normal estimation are performed to
polish the overlapping area, and prepare for the subsequent surface reconstruction. To generate a human body mesh with high
fidelity, a multi-scale surface reconstruction method [46] is employed, where the reconstructed surface details are adaptive to the
local curvatures of the captured point cloud. By properly deploying multi-scale B-spline basis functions on the adaptive signed
distance field, the surface reconstruction problem can be reduced to a well-conditioned sparse linear system, which can be solved
in a multi-grid way. Finally, a watertight human body mesh model can be generated. Detailed results will be demonstrated in
the next section.
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5 Evaluations and Discussion
The proposed system is evaluated on a number of subjects with different heights, weights and body shapes. Fig. 13 shows 13
resultant models, and the corresponding statistics are summarized in Table 1. In addition, Fig. 14 shows a reconstructed model
in standard pose from three different views under different illumination conditions. It can be seen that global shape structure
and local geometric details are reconstructed, and the normals for each point are smooth estimated. And several other poses of
different subjects are shown in Fig. 15, which verify the feasibility of capturing non-standard T poses with varied self-occlusions.
In the following, the precision of the captured models will be discussed and evaluated, as well as the precision of each component
of the proposed system.

Figure 13: Results of the proposed system on 13 subjects. (a) the fused point clouds. (b) the reconstructed mesh geometry; and
(c) the mesh model with texture information.

Name G H (cm) W(kg) #Points #Triangles
Xie M 178 75 4,931,672 7,216,784
Dong M 172 53 5,723,490 7,115,008
Wang M 176 72 5,873,831 7,918,656
Fang M 173 61 5,893,414 7,754,780
Yuan F 170 50 5,754,611 7,193,872
Zhou M 173 62 5,614,031 7,234,976
Lin0 M 171 66 5,785,377 7,519,738
Lin1 M 174 68 5,737,954 7,444,508
Chen F 161 46 5,675,333 7,497,878
Niu M 168 58 5,720,679 7,493,470
Zhu M 189 78 5,984,364 7,524,286
Kang M 174 77 5,118,980 7,002,914
Cui M 183 81 5,922,790 7,143,504

Table 1: The statistics of captured models. G (gender), H (height), W (weight), #Points (fused points), #Triangles (model
faces).

5.1 Accuracy of the Single Point-cloud
The local calibration in Section 4.1 and the stereo matching in Section 4.2 are two main factors that influencing the accuracy of
partial point cloud from a single stereo rig.

First, the rectification error [10] is employed to evaluate the accuracy of local calibration for stereo rigs. Based on row-aligned
epipolar geometry, given a match (p1, p2), the rectification error ϵr is defined as ϵr = ||v(p1)− v(p2)||, where v(p1) and v(p2) are
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Figure 14: Example of a reconstructed model under different illumination conditions and viewpoints.

Figure 15: Example of different poses.

the row coordinates of p1 and p2. In practice, ϵr is evaluated at the corners of the checkerboard pattern for each stereo rig. The
average of ϵr equals to 0.12 and the maximum value is 1.14 at the pixel level, which is about 0.006mm to 0.01mm at the distance
level. The largest error usually occurs at the image border without covering human body. Therefore, the row-aligned epipolar
geometry is guaranteed for later binocular stereo matching.

Second, the accuracy of recovered depth from stereo matching can be estimated using Eq. (7), based on the triangulation rule
in epipolar geometry. It evaluates the depth error due to the mis-match of one pixel:

∆Z = B · F ·max{
1

d
−

1

d± 1
}, (7)

where B is the baseline length and F is the focal length. This metric varies with different depth values. In the proposed system,
the captured human usually stands within a depth range of 1.5∼2.5m. B is set to 150mm. And F is approximately 50.2mm,
which is estimated by the local calibration in Section 4.1. Thus, the error of recovered depth ranges from 1 to 3 millimeters
according to Eq. (7), meaning that one pixel mis-match in disparity results in an average error of 2mm in depth, which lays a
foundation for the precision of the whole system.

5.2 Accuracy of the Acquired Human Body Models
In this paper, several commonly-used anthropometry measurements, as shown in Fig. 16, are utilized to evaluate the accuracy of
acquired human body models.

Among these anthropometry measurements, body lengths and body circumferences represent the reconstruction error of a
single point cloud and the reconstruction error of the complete registered point cloud, respectively. The precision of a single point
cloud could be regarded as the accuracy of the proposed stereo matching algorithm. And, the precision of the complete registered
point is influenced by the initial alignment from global calibration (Section 4.1) and the following registration of point clouds
(Section 4.3).

It is challenging to assess the ground-truth values of these measurements during the capture process, considering the non-
rigidity of the human body. This article tests the method of obtaining these values by manual measurement. Testing results show
that the manual measurement is neither reliable nor consistent. During experiments, 10 participants are recruited to measure the
anthropometry parameters of a plastic mannequin. The average measurement variation is 6.23mm. In addition, one participant
is asked to measure the same human body for ten times. The average measurement variation is 4.75mm. Notably, the manual
measurement can be either subjective, or easily affected by human body variation due to unwanted movement.

To resolve the above issues, this research proposes a novel evaluation method that obtains simultaneous anthropometry
measurements while acquiring human body models. In the proposed method, thin sticky measuring tapes are attached to human
body to obtain ground-truth anthropometry measurements (listed in Fig. 16). And the human body with tapes is acquired and
reconstructed by the proposed system. Two subjects (one male, one female) are used as representatives for evaluation, and the
male representative is shown in Fig. 17.

Then, the reconstructed anthropometry values are calculated as the Euclidean distances between a set of points along the
tape contours, shown as in Fig. 18. In the meantime, the ground-truth of corresponding measurements can be directly read
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Figure 16: Illustration of anthropometry measurements.

Figure 17: (a), (b) and (c) show the acquired human body model of a male subject with attached measuring tapes from the front,
back and side view, respectively. The measuring tapes are well captured.
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Figure 18: (a) and (b) show the captured image and the calculated length of the right calf, respectively. (c) and (d) show the
same for the left upper arm circumference. (e) and (f) show the image and the calculated lengths of the shoulder/crotch, shoulder
breadth and chest circumference (from left to right), respectively.
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from 2D images. This simultaneous measurement and acquisition approach allows accurate evaluation of captured anthropometry
parameters. Taking the measurement of right calf length for example (see Fig. 18(a)), the ground-truth value of the right calf
length is 361.00mm (numbers from the raw image). The reconstructed value is 363.39mm by computing the Euclidean distances
along the tape on the reconstructed model (see Fig. 18(b)). Hence the reconstruction error is 2.39mm.

Female Male
M IGC Ours PS COL IGC Ours PS COL
A 6.71 2.94 10.61 6.82 7.05 2.45 10.14 5.23
B 4.46 1.24 10.38 8.91 5.61 3.22 8.35 4.02
C 9.75 5.04 10.33 5.55 4.90 2.65 9.73 4.43
D 5.13 3.24 11.21 10.12 6.34 4.54 10.84 9.87
E 7.82 2.19 14.35 9.35 5.12 2.35 9.49 6.14
F 6.19 1.82 9.19 8.17 4.68 2.24 8.64 9.31
G 4.93 1.71 7.42 9.46 7.81 2.15 9.11 6.48
H 6.61 2.25 8.16 11.31 2.32 1.92 8.4 4.20
I 3.28 2.34 9.78 7.92 6.95 2.02 8.13 9.01
J 8.11 2.47 13.32 10.65 7.87 1.48 9.57 5.78
K 11.09 2.89 12.35 4.37 6.56 1.65 8.83 3.25
L 7.53 2.29 9.67 8.65 5.14 2.39 9.48 9.12
M 8.53 3.12 7.87 5.78 8.29 2.16 10.09 7.62
N 3.84 1.41 10.18 9.54 10.14 3.08 12.69 10.51
O 5.01 2.28 8.15 6.49 9.07 2.18 10.95 8.26

Table 2: Statistics of reconstruction errors. IGC, PS and COL are short for the initial global calibration, Photoscan and COLMAP,
respectively.

Table 2 shows the statistics on the reconstruction accuracy for all measurements. The error is the difference between the ground
truth value read from the color image and the measured values from the reconstructed human model. The unit is millimeter. The
average error for our results is 2.457mm, while the max error is up to 5.04mm occurred for the chest circumference. The reason
is that the underarm parts have missing data and are reconstructed by hole filling. Except the human face, there are few textures
in the human body surface. From Fig. 16 and Fig. 17, it can be seen almost all of the anthropometry measurements locating
in the texture-less body regions. The measurement A,B,C,D,E,K and M in human torso, which locate from the shoulder to the
knee, are collected separately to clarify the effectiveness in the reconstruction of low texture areas. As listed in Table 2, the max
reconstruction error in low texture areas is 5.04mm for the female and 4.54mm for the male, which is the same as the statistics
of all the measurements. And the average texture-less reconstruction error is 2.95mm for the female and 2.71mm for the male,
respectively, which is larger than all the measurements. In addition, we evaluate the reconstruction error of the initial alignment
from global calibration, of which average error is 6.56mm. It is consistent with the visual comparison of the alignment result in
Fig. 11 that the reconstruction error is decreased after registration. Also, based on the statistics, we find that slimmer human
body covering less capturing space leads to bigger reconstruction error. This is due to the fact that larger depth range results in
more accurate stereo matching.

5.3 Comparison
With measuring tapes attached on two representatives, this research compares the proposed method with the state-of-art com-
mercial software called Photoscan [1], of which kernel is derived from PMVS [14], a representative general-purpose reconstruction
method based on multi-view geometry. With additional engineering optimizations, Photoscan can produce much better reconstruc-
tion than the initial PMVS. The highest accurate level is set for each step in the work-flow of the Photoscan. Due to insufficient
textures of human skins, inaccurate estimation of surface patches has been created such as non-smoothness and outliers during
the estimation of dense point-clouds by the multi-view stereopsis.

The proposed method is also compared with COLMAP [39], which is one of the best multi-view stereo (MVS) pipeline for
general objects models acquisition. It takes the output of structure-from-motion (SfM) to compute depth and normal information
for every pixel in 2D image, then utilizes the depth and normal maps of multiple images to produce a dense point cloud of the
scene/object. Based on the fused point cloud, screened poisson surface reconstruction [22] is adopted to reconstruct the surface
geometry. It should be noticed that the SfM step in COLMAP is failed due to insufficient features of the human skin. Only a
subset of images is resolved (half of all the images at most), which leads to incomplete human body shapes. By feeding global
calibration results obtained by the proposed method into the COLMAP, the reconstructed human body models are generated,
as shown in Fig. 19(c). However, due to incorrect normal estimation during MVS optimization, the reconstructed models are
severely contaminated by noises.

Fig. 19 shows the qualitative comparison of three methods. It could be seen that the geometry information recovered by the
proposed method is much more similar to the real human body surface than other two methods. The quantitative comparison on
the anthropometry measurements is performed to the reconstructed models generated by Photoscan and COLMAP, respectively.
The comparison of statistics can be found in Table 2, which demonstrates the advantage of the proposed work. Similarly, the
average texure-less reconstruction error of Photoscan is 11.01mm for the female and 9.63mm for the male, respectively, while
COLMAP is 7.27mm for the female and 5.79mm for the male, respectively. By comparison, the proposed method improves the
reconstruction accuracy in the low texture areas of human body surface.

5.4 Evaluation on the Benchmark
Following the standard way of evaluating a passive multi-view stereopsis system, the proposed system is evaluated on two bench-
mark datasets "temple" and "dino", which are provided by the Middlebury Multi View Stereo [36]. There are 312 images and
363 images in "temple" and "dino", respectively. In order to integrate the datasets into the proposed multi-binocular pipeline,
two adjacent images are grouped into a pair of stereo images and rectified with the given calibration parameters. Taking the
"temple" dataset for example, 166 pairs of stereo images are organized to generate dense depth information via the proposed
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(a) Photoscan

(b) COLMAP

(c) Ours

Figure 19: Reconstructed models obtained (a) by Photoscan. (b) by COLMAP. (c) by the proposed method.

(a) (b)

Figure 20: Evaluation of the proposed system on the Middlebury Multi-View Stereo dataset. (a) acquired model of "Temple".
(b) acquired model of "Dino".

stereo matching algorithm. Finally, all partial depth information is fused via the proposed multi-view point clouds registration.
The topology graph used in the fusion is obtained by calculating overlaps between point clouds. As shown in Fig. 20, detailed
and completed static models for two datasets could be acquired by the proposed system.

5.5 Performance
The entire acquisition pipeline is executed on a desktop PC with 3GHz CPU and 16GB memory. The average computational time
of each step is shown in Table 3. Overall it takes about 30 minutes to generate a mesh model for a static human body. The most
time-consuming part is multi-view registration, because the high density of partial point clouds produced by stereo matching and
the registration algorithm is iterative. Using a subset of points could improve the computational efficiency but may sacrifice result
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step time (min.)
global calibration 1
seed-growing stereo matching 1.5
refinements of disparity registration 3
multi-view point clouds registration 15
hole filling 5
3D surface reconstruction 5.5

Table 3: The execution time of each step in the pipeline.

quality. The stereo matching algorithm is conducted on 30 stereo rigs parallelly to generate point clouds since the stereo rigs are
independent of each other, so as the disparity image refinement step.

5.6 Ablation Studies
Two ablation studies are discussed in this section, including the influence of camera numbers and the robustness of the proposed
seed propagation.

5.6.1 Numbers of Cameras
An incremental experiment is conducted to study the influence of the number of cameras. During the experiment, there are 5
tests with increasing number of viewpoints. Based on the hardware configuration of the proposed system, there are two selection
rules in each test. First, a pair of stereo cameras, which is regarded as the depth sensor, is the smallest unit to be selected.
Second, 6 pairs of stereo cameras located in diagonal viewpoints (as shown in Fig. 1) will be added incrementally in these tests.
Namely, there are 12, 24, 36, 48 and 60 cameras in 5 tests respectively. The acquired completed point clouds in the incremental
experiment are shown in Fig. 21.

(a) (b) (c) (d) (e)

Figure 21: Completed point cloud acquired, respectively, by (a) 12 cameras. (b) 24 cameras. (c) 36 cameras. (d) 48 cameras. (e)
60 cameras.

To avoid large distortion caused by wide baseline, the baseline of each stereo rig is set to 18cm. Due to the relatively small
baseline, capturing data could be missed in some parts of the human body if fewer cameras are used, which also can be observed
in Fig. 21. From Fig. 21 (a) to (e), with the addition of cameras focusing on different areas of the human body, the resulting
point cloud is achieved more completely. As a conclusion, the amount of cameras in the proposed system is sufficient to capture a
complete human body robustly, expect for a few self-occluded areas. Moreover, more cameras could provide more comprehensive
texture information (see the measuring tapes in Fig 21), which will benefit the accuracy measurements of reconstructed human
body models.

5.6.2 Seed Propagation
In this section, robustness and effectiveness of the proposed seed propagation based stereo matching method are discussed. At
first, the input stereo images are divided into 2D grids and then 4 features are extracted in each grid, see Fig. 6. In this case,
sufficient and uniformly distributed salient pixels are extracted to be matched as matching seeds. The number of matching seeds
depends on values of two thresholds in the photometric consistency constraint, namely, τc for the ZNCC matching cost C(·) and
τr for the match reliability R(·) in Eq. 3. The larger the two threshold values, the less the number of matching seeds. During
experiments, to ensure the reliability of matching seeds, τc is set to 0.95 (of which maximum is 1.0) and τr is set to 1.5 (a
match could be considered very credible with the value greater than 1.1). To clarify the influence of the number of matching
seeds, three different threshold values of τc and τr are tested. Besides the above empirical threshold values, other two test sets
are {τc = 0.5, τr = 0.85} and {τc = 0.99, τr = 1.9}. Results of matching seeds of three different sets are shown in Fig. 22(a).
Quasi-dense disparity images before subsequent refinement process are shown in Fig. 22(b) From left to right, the matching seeds
are shown in gray-scale pixels which corresponding to increasing threshold values, respectively. It can be concluded that smaller
τc andτr should generate a number of matching seeds but also introduce more mismatches.

After extraction of matching seeds, seed propagation is conducted to generate quasi-dense disparity results. The whole process
follows the rule of priority prorogation, which is, neighboring matching seeds with higher credibility P (·) (see Fig. 3) are matched
in advance. Considering the lack of texture in those neighboring areas of matching seeds, in practical, the photometric consistency
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(a) (b)

Figure 22: (a) matching seeds with {τc = 0.5, τr = 0.85}, {τc = 0.95, τr = 1.5} and {τc = 0.99, τr = 1.9}, respectively. From
left to right, numbers of matching seeds are 3468, 1980 and 646, respectively. (b) the corresponding quasi-dense disparity results
generated by seed propagation.

constraint is relaxed to {τc = 0.75, τr = 1.05}. Similar to the ablation study on matching seeds, three sets of thresholds with
increasing values are tested. Besides the practical values, other two sets are {τc = 0.35, τr = 0.85} and {τc = 0.95, τr = 1.5},.
It should be noted that the latter set is the same as the values in the extraction of matching seeds, which is very strict. Three
quasi-dense disparity images are shown in Fig. 23(a) and the corresponding final disparity images are shown in Fig. 23(b). With
too strict thresholds in the propagation, most pixels remains unmatched in the quasi-dense result. After the refinement process,
final disparity results of three different threshold sets are well obtained. And, too loose or too strict propagation thresholds
increase the time cost of refinement process. To balance off the algorithm performance and the time cost, τc = 0.75, τr = 1.05
has been used in the seed propagation process of all the practical experiments. Eventually, as shown in Fig. 13(a), point clouds
are completely recovered by the proposed method for various input capture images.

(a) (b)

Figure 23: (a) quasi-dense disparity results with {τc = 0.35, τr = 0.85}, {τc = 0.75, τr = 1.05} and {τc = 0.95, τr = 1.5},
respectively. From left to right, numbers of matching seeds are 3468, 1980 and 646, respectively. (b) the corresponding final
disparity results after the refinement process.

6 Conclusion
A multi-view high-precision human body acquisition system is proposed in this work. The average reconstruction accuracy is
within 2.5mm in terms of anthropometry measurements. The hardware setup is based on consumed DSLR cameras which avoid the
significant cost of high-end scanning devices and the interference between commodity RGBD sensors with limited accuracy. The
acquisition pipeline is subsequently designed as following: (1) first calibrate both local stereo rigs and global camera array; (2) then
recover dense and precise point clouds via novel hierarchical stereo matching; (3)finally reconstruct high-quality watertight surface
mesh model. This research tests the proposed system by capturing a number of human body models with varied heights, weights
and body shapes. A novel evaluation method is proposed that prevents the measurement errors when producing ground-truth
anthropometry parameters. The results and comparisons clearly justify the performance of our system over the state-of-the-art
approaches.

Limitations The proposed system is designed to capture human body shapes with precise anthropometry parameters, but not
a specific part as human face/hand. However, the proposed acquisition strategy would be useful therein as well with tailored
camera setup either separates from or builds upon the present system. Also, the local-global calibration is dedicated to the
proposed system and lays the foundation for accurate depth recovery, but more complicated than typical MVS-based system
without binocular stereo rigs.

Future Works In the future, the joint optimization between binocular and multi-view stereos will be further explored to recover
more accurate point clouds. More efficient geometry processing and surface reconstruction methods for dense point clouds will
also be investigated [25].
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